
Journal of Applied Mathematics and Mechanics 73 (2009) 434–442

Contents lists available at ScienceDirect

Journal of Applied Mathematics and Mechanics

journa l homepage: www.e lsev ier .com/ locate / jappmathmech

Solution of plane seepage problems for a multivalued seepage law when there is
a point source�

I.B. Badriyev ∗, O.A. Zadvornov, L.N. Ismagilov, E.V. Skvortsov
Kazan, Russia

a r t i c l e i n f o

Article history:
Received 11 March 2008

a b s t r a c t

The steady seepage of an incompressible fluid in a uniform porous medium, occupying an arbitrary
bounded two-dimensional region, when there is a point source present is considered. Part of the boundary
of the region is free, while the remaining part is impermeable for the fluid. It is assumed that the function
defining the seepage law is multivalued and has a linear increase at infinity. A generalized formulation
of the problem is proposed in the form of a variational inequality of the second kind. An approximate
solution of the problem is obtained by an iterative splitting method, which enables approximate values
of both the solution itself (the pressure) and its gradient to be found. Analytic expressions describing
the boundaries of the region where the modulus of the pressure gradient takes a constant value are
obtained for model problems of a line of bore holes. Numerical experiments are carried out for model
problems, which confirm the effectiveness of the proposed method. Good agreement is observed between
the results of calculations obtained analytically and by approximate methods.

© 2009 Elsevier Ltd. All rights reserved.

Problems of the seepage of an incompressible fluid in a uniform porous medium for a multivalued seepage law with a limited gradient
were considered in Ref. 1. Here, when the functions, defining the seepage law, and the seepage regions have a fairly simple form, exact
solutions were obtained for a number of model problems with point sources (see, for example, Refs 2-4 and the references given there). In
the case of an arbitrary seepage region, a singularity related to the presence of a source was only taken into account for finite-dimensional
approximations of the problems (see, for example, Ref. 5). A mathematical formulation of the problem with a continuous law when a point
source was present was given in Ref. 6 and an existence theorem was proved. A mathematical formulation of the problem was presented
in Ref. 7 in the case of a multivalued law in the form of a variational inequality and its solvability was established.

An iterative splitting method was proposed in Ref. 8 for solving variational inequalities of the second kind and its convergence was
investigated. This method is used below for the seepage problem considered. It enables approximate values of both the pressure and the
pressure gradient to be obtained. It is verified that the conditions for the method to converge for variational inequalities as it applied to
the seepage problem are satisfied. The main difficulty in using the iterative splitting method8 is solving minimization problems, which
arise in each iteration. However, the minimization problem can be solved in explicit form for the seepage problem, so that each step of the
method is in fact reduced to solving a boundary-value problem for Laplace’s equation.

1. Formulation of the problem

We will consider the seepage of an incompressible fluid in a bounded plane region � with a Lipschitz-continuous boundary

Part of the boundary �1 is free, and the fluid pressure on it is equal to zero, while the part �2 is an impermeable solid wall. We will
assume that, at the internal point x* of the region �, there is a point source of constant intensity q > 0. It is required to determine the steady
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fields of the pressure p and of the velocity v = {v1, v2} of the fluid, satisfying the fluid mass balance equation

(1.1)

with a multivalued seepage law

(1.2)

(the seepage law is written in the form of an inclusion, and not an equality, since gϑ is a multivalued function) and the corresponding
boundary conditions

(1.3)

where n is the unit vector of the outward normal to �2.
We will assume that the multivalued function gϑ can be represented in the form

where ϑ ≥ 0, � ≥ 0 are specified constants, and the multivalued function H and the single-valued function g0 are given by the relations

the function g*: [0, +∞] → R1 satisfies the conditions

(1.4)

and constants k > 0, �* ≥ 0, L > 0 exist such that

(1.5)

(1.6)

There are examples of functions which satisfy the above conditions (see, for example, Refs 2 and 3).
We will define the operator G: R2 → R2 in terms of the function g0 as follows:

By analogy with Ref. 6 we will formulate the following generalized form of problem (1.1)–(1.3).
We will put

We will mean by the solution of problem (1.1)–(1.3) a function p ∈ V1, which is the solution of the variational inequality

(1.7)

where

Following the previous approach,6 we will consider the problem of finding the function �r ∈
◦

W
(1)
1 (Br(x∗)), which is the solution of the

integral identity

(1.8)

where

As with the results obtained previously,2,6 we will present an explicit form of the solution of problem (1.8). We will denote the function
inverse to g* by h*. It follows from conditions (1.4)–(1.6) that such a function h* exists and is continuous. We will define the function h by
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the formula h(�) = h*(�) + �*, and also the function

It was shown in Ref. 6 that the function

is the solution of problem (1.8). Then the following estimate holds

(1.9)

We will choose the quantity r to be sufficiently large so that � ⊆ Br(x*). Since x* is an internal point of the region �, we obtain � > 0, for
which the following inclusion is satisfied

It follows from inequality (1.9) that wr ∈ W (1)
2 (˝�), and so, its trace on �1 is defined, and hence we obtain the function w� ∈ W (1)

2 (˝)
such that

(1.10)

An example is the function defined by the formula

The solution of problem (1.7) will be sought in the form p = wr + w� + w, where w ∈ V2 is an unknown function. Since C∞
1 ⊆ C∞

0 (Br(x∗)),
then, taking identity (1.8) into account, problem (1.7) reduces to finding the function w ∈ V2, which is the solution of the variational
inequality

(1.11)

where (·,·)V is the scalar product in V2.
By analogy with the previous approach6, it is easy to verify that the form

is linear and bounded on V2 with respect to the second argument, and so it generates the operator A: V2 → V2

Hence problem (1.11) can be written in the form of the following operator variational inequality

(1.12)

The functional � : V2 → R1 is defined by the formula

(1.13)

It was proved in Ref. 7 that when conditions (1.4)–(1.6) are satisfied the set of solutions of problem (1.12) is not empty, convex or closed.
It should be noted that relations (1.1)–(1.3) also describe the problem of determining the boundaries of limit equilibrium pillars of

residual viscoplastic petroleum (see Ref. 10), i.e., lines on which |�p| = �.

2. Iteration method

Variational inequality (1.12), which characterizes problem (1.1)–(1.3), can be written in the form

(2.1)

if we put � =� and write the functional � in the form � = � ◦ �, where the functional � is defined on Y = [L2(�)2] by the formula

To solve variational inequality (2.1) we will use the iterative splitting method proposed in Ref. 8, which consists of the following. Suppose
� > 0, �*: Y → V2 is the operator conjugate to �, and w0 is an arbitrary element on V2, y0, �0 from Y. For n = 0, 1, 2, . . ., knowing yn and �n,
we put

(2.2)
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We then find yn+1 by solving the minimization problem

(2.3)

where ||·||Y (·,·)Y is the norm and scalar product in Y. We finally put

(2.4)

Theorem. Suppose 0 < �0 ≤ � < 2	/(2	� + 1), � = 1/L and the iteration sequences {wn}+∞
n=0, {yn}+∞

n=0, {�n}+∞
n=0 are constructed in accordance with

relations (2.2)–(2.4). The sequence wn then weakly converges in V2 to a certain solution w of problem (2.1), and the sequence yn converges weakly
in Y to �w as n → +∞.

Proof. Following the approach used previously in Refs 6 and 7, we can verify that the functional � is Lipschitz-continuous and convex,
while the operator A is inversely strongly monotonic, i.e.,

and coercive, and hence the assertion of the theorem follows from the results obtained previously.8

When using the proposed iteration process numerically the main difficulty is carrying out its second step, i.e., solving minimization
problem (2.3). We define the following functional on Y

Then inequality (2.3) can be rewritten in the form of the inclusion

equivalent to the following9

where �∗
� is a functional conjugate to ��. For the seepage problem considered, we must calculate

where

Hence, since the calculations of �n are carried out using explicit formulae, each step of iteration process (2.2)–(2.4) reduces to solving
problem (2.2), i.e., by virtue of the Riesz – Fisher theorem, it actually reduces to solving a boundary-value problem for Laplace’s equation
with corresponding boundary conditions.

We constructed finite element approximations for variational inequality (2.1) and we investigated their convergence.

3. Accurate characteristics of the solution of model problems

We will consider the problem of determining the boundaries of the regions ��, when the modulus of the pressure gradient is equal to a
specified value � in the case of a rectilinear chain of bore holes with a flow rate q, equally spaced a distance 2l from one another. By virtue
of the symmetry of the problem we can confine ourselves to an element of the flow, representing the half-strip {0 ≤ x ≤ l, y ≥ 0} (see Fig. 1,
where X = x/l, Y = y/l).

We will consider the case (Problem 1) when the function gϑ has the form (see, for example, Ref. 3)

(3.1)

Here, obviously ϑ = �(1 − 
).
In order to construct analytic expressions for the lines describing the boundaries of the region with constant modulus of the pressure

gradient, we will introduce variable hodographs of the velocity v, �, where � is the angle between the velocity vector and the x axis. The
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Fig. 1.

half-strip {0 ≤ � ≤ �/2, v ≥ 0} (see Fig. 2) in the plane of the variables v, � corresponds to the half-strip in the physical plane. For the seepage
law (1.2), (3.1) the stream function 	 (v, �) satisfies the linear equation11

(3.2)

which it is required to solve in the regions (see Fig. 2)

The values of the function � in regions D1 and D3 will be denoted by �1 and �3. In Fig. 2a and Fig. 2b the region

corresponds to the regions BCFG and BCEF in Fig. 1a and Fig. 1b respectively. It follows from the results obtained previously,10 that in these
regions the streamlines are straight lines, the pressure along them varies linearly, while on the boundaries of the region D2 the following
conditions are satisfied when 0 ≤ � ≤ �

(3.3)

The solution of the problem depends on the dimensionless parameters 
 and Q = q/(4�l). We will consider two cases: Q ≤ 
 < 1 and Q ≥ 1.
When Q ≤ 
 < 1 (Figs 1a and 2a) the following conditions are satisfied on the boundaries of regions D1 and D3:

(3.4)

(3.5)

(3.6)

Fig. 2.
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(3.7)

(3.8)

The rectangle D1 is divided by a section of the straight line v = �Q into two rectangles D11 and D12 (Fig. 2a), and the following “joining”
conditions are satisfied in this section when 0 ≤ � ≤ �/2

(3.9)

An analytic solution of problem (3.2)–(3.9) can be obtained by the method of separation of variables, using the procedure described in
Ref. 12. We introduce the following notation

The solution in the subregions D11, D12 and D3 is represented in the following form, respectively (everywhere henceforth summation
is carried out over n from n = 1 to n = ∞)

where

Reversion to the x, y flow plane is achieved using well-known transition formulae.11 The coordinates X1(�), Y1(�) and X2(�), Y2(�) of the
lines of constant value of the velocity BG (|∇v| = �) and CF (|∇v| = 
�) (Fig. 1a) have the form

(3.10)

where

It can be verified that the series in (3.10) converge absolutely.
When Q = 
 = 1⁄2 we have

When Q ≥ 1 (Fig. 1b and 2b) conditions (3.4), (3.5) and (3.8) are satisfied, and

(3.11)

(3.12)
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The half-strip D3 is divided by a section of the straight line v = �Q into a rectangle D31 and a half-strip D32 (Fig. 2b), and on this section

(3.13)

The solution of problem (3.2)–(3.5), (3.8), (3.11)–(3.13) has the form

where

The coordinates X1(�), Y1(�) and X2(�), Y2(�) of the lines BF (|∇v| = �) and CE (|∇v| = 
�) (Fig. 1b) are specified by the equations

(3.14)

where

It can be established that the series obtained also converge absolutely.
When Q = 1 and 
 = 1⁄2 we have

We will now consider the case (Problem 2), when

(3.15)

In this case the characteristics of the exact solution are obtained by the jet theory method,13 and also by transformation of the velocity
hodograph (see Refs 1 and 12). The coordinates of the line on which the modulus of the pressure gradient has a constant value � when
Q ≥ 1 are given by the equations

(3.16)
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Fig. 3.

4. Results of numerical experiments

An iterative splitting method (2.2)–(2.4) was used to solve the problems considered in the previous section. In the numerical solution
of the problems, the half-strip, shown in Fig. 1, was replaced by a finite region

on three parts of the boundary (X = 0, X = 1 and Y = 0) of which the conditions (v, n) = 0 are specified, while on the boundary �∞ (Y = Z)
“cutting off” infinity, a homogeneous Dirichlet condition v = 0 is specified. A bore hole with a flow rate q is situated at the point O. The
dimensionless flow-rate parameter Q characterizes the seepage rate at infinity v∞ = Q�.

To construct a finite-dimensional approximation of the problem, we carried out a triangulation of the region obtained by uniform
splitting of the sides � into n1 and n2 parts, a construction of triangles with diagonals parallel to the bisectrix of the first and third
coordinate angles, and the use of the finite element method employing piecewise-linear functions on the triangles. The criterion of the
ending of the iteration process was achieving a relative difference in the values of the approximate solution in neighbouring iterations
of the specified accuracy � = 10−3. We chose the following values of the input parameters of the problem for the calculations: � = 1 and

 ∈ (0, 1) for Problem 1, and � = 1 and 
 = 0 for Problem 2, splitting of the region n1 = 20 and n2 = 200, Z = 10, and the values of the iteration
parameters � and � were varied from 0.1 to 2 in steps of 0.1.

The results of numerical experiments for Problem 1, when the function gϑ is defined by formula (3.1), are shown in Fig. 3 for Q = 0.4
(Q ≤ 
) and for Q = 1.076 (Q ≥ 1). The curves BG and CF in the left-hand part of Fig. 3 are the boundaries of the zone ��, constructed using
formulae (3.10). The curves BF and CE on the right-hand part of Fig. 3 are the boundaries of the zone ��, constructed using formulae (3.14).

Fig. 4.
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Regions in which the modulus of the gradient of the approximate solution (and actually approximate values of the modulus ẏ = �p = ∇p)
differs from � by an amount 5 × 10−4 are distinguished by the darker shading. As a result of the numerical solution of this problem it
was established that, when the flow rate of the bore hole q increases, and correspondingly the parameter Q also, the dimensions of the
stagnation zone �� decrease.

The results of the numerical experiments for Problem 2, when the function gϑ is defined by formula (3.15), are shown in Fig. 4 for Q = 1.4.
The curve BF is the boundary of the zone ��, constructed using formulae (3.16).

Hence, numerical experiments, carried out for model problems, have shown good agreement with the results obtained by approximate
and analytical methods. This confirms the effectiveness of the iteration method considered, which enables us to obtain approximate values
of the solution of the seepage problem for a multivalued seepage law in the case of an arbitrary region � and when conditions (1.4)–(1.6)
are satisfied.
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